atesting.ru Аптечка сисадмина,Ошибка Стандартная ошибка

Стандартная ошибка

How to dou

Когда вы создаете граф в Excel и ваши данные являются средствами, рекомендуется включить стандартную ошибку каждого значения на вашем графике. Это дает зрителю представление о распространении баллов вокруг каждого среднего.

Вот пример ситуации, когда это возникает. Данные являются (вымышленными) результатами тестов для четырех групп людей. Каждый заголовок столбца указывает количество времени подготовки для восьми человек в группе. Вы можете использовать графические возможности Excel для рисования графика. Поскольку независимая переменная является количественной, граф линии является подходящим.

Четыре группы, их средства, стандартные отклонения и стандартные ошибки. На графике показаны групповые средства.

Для каждой группы вы можете использовать AVERAGE для вычисления среднего и STDEV. S для вычисления стандартного отклонения. Вы можете рассчитать стандартную ошибку каждого среднего. Выберите ячейку B12, поэтому в поле формулы показано, что вы вычислили стандартную ошибку для столбца B по этой формуле:

= B11 / SQRT (COUNT (B2: B9))

Фокус в том, чтобы получить каждую стандартную ошибку в графике. В Excel 2016 это легко сделать, и оно отличается от предыдущих версий Excel. Начните с выбора графика. Это приведет к появлению вкладок Design and Format. Выберите

Дизайн | Добавить элемент диаграммы | Ошибка баров | Дополнительные параметры ошибок.

Путь к вставке баров ошибок.

В меню «Бары ошибок» вы должны быть осторожны. Один из вариантов – стандартная ошибка. Избегай это. Если вы считаете, что этот выбор указывает Excel на стандартную ошибку каждого значения на графике, будьте уверены, что Excel не имеет абсолютно никакого представления о том, о чем вы говорите. Для этого выбора Excel вычисляет стандартную ошибку набора из четырех средств – не стандартную ошибку в каждой группе.

Дополнительные параметры панели ошибок являются подходящим выбором. Откроется панель «Формат ошибок».

Панель «Ошибки формата».

В области «Направление» панели выберите переключатель рядом с «Оба», а в области «Стиль конца» выберите переключатель рядом с «Кап».

Один выбор в области «Сумма ошибки» – это стандартная ошибка. Избегайте этого. Это не означает, что Excel помещает стандартную ошибку каждого среднего на график.

Прокрутите вниз до области «Сумма ошибки» и выберите переключатель рядом с «Пользовательский». Это активирует кнопку «Укажите значение». Нажмите эту кнопку, чтобы открыть диалоговое окно «Пользовательские ошибки». С помощью курсора в поле «Положительное значение ошибки» выберите диапазон ячеек, который содержит стандартные ошибки ($ B $ 12: $ E $ 12). Вставьте вкладку «Отрицательная ошибка» и сделайте то же самое.

Диалоговое окно «Нестандартные ошибки».

Это поле Negative Error Value может дать вам небольшую проблему. Перед тем, как вводить диапазон ячеек, убедитесь, что он очищен от значений по умолчанию.

Нажмите «ОК» в диалоговом окне «Нестандартные ошибки» и закройте диалоговое окно «Формат ошибок», и график будет выглядеть следующим образом.

График группы означает, включая стандартную ошибку каждого среднего.

Классификация ошибок измерений

_______Измерения в геодезии рассматриваются с двух точек зрения: количественной, выражающей числовое значение измеренной величины, и качественной, характеризующей
ее точность. Из практики известно, что даже при самой тщательной и аккуратной работе многократные (повторные) измерения не дают одинаковых результатов. Это указывает на
то, что получаемые результаты не являются точным значением измеряемой величины, а несколько отклоняются от него. Значение отклонения характеризует точность измерений.

_______При геодезических измерениях неизбежны ошибки. Эти ошибки бывают грубые,
систематические и случайные.

_______ К грубым ошибкам относятся просчеты в измерениях по причине невнимательности
наблюдателя или неисправности прибора, и они полностью должны быть исключены. Это
достигается путем повторного измерения.

_______Систематические ошибки происходят от известного источника, имеют
определенный знак и величину и их можно учесть при измерениях и вычислениях.

_______Случайные ошибки обусловлены разными причинами и полностью исключить их из
измерений нельзя. Поэтому возникают две задачи: как из результатов измерений получить
наиболее точную величину и как оценить точность полученных результатов измерений.
Эти задачи решаются с помощью теории ошибок измерений
_______

_______В основу теории ошибок положены следующие свойства случайных ошибок:_______1. Малые ошибки встречаются чаще, а большие реже._______2. Ошибки не превышают известного предела._______3. Положительные и отрицательные ошибки, одинаковые по абсолютной величине,
одинаково часто встречаются._______4. Сумма ошибок, деленная на число измерений, стремится к нулю при большом числе
измерений.

_______По источнику происхождения различают ошибки приборов, внешние и личные.
Ошибки приборов обусловлены их несовершенством, например погрешность угла,
измеренного теодолитом, неточным приведением в вертикальное положение оси его
вращения.

_______Внешние ошибки происходят из-за влияния внешней среды, в которой протекают
измерения, например погрешность в отсчете по нивелирной рейке из-за изменения
температуры воздуха на пути светового луча (рефракция) или нагрева нивелира
солнечными лучами.

_______Личные ошибки связаны с особенностями наблюдателя, например, разные наблюдатели
по-разному наводят зрительную трубу на визирную цель. Так как грубые погрешности
должны быть исключены из результатов измерений, а систематические исключены
или ослаблены до минимально допустимого предела, то проектирование измерений с
необходимой точностью и оценку результатов выполненных измерений производят,
основываясь на свойствах случайных погрешностей.

Выборка, генеральная совокупность и стандартное отклонение

Допустим, вы покупаете операционный усилитель (назовем его OPA100) и после некоторых экспериментов в лаборатории вы понимаете, что спецификации в техническом описании не дают вам достаточной информации о входном напряжении смещения при рабочих температурах вашего проекта. Чтобы исправить это, вы решили купить 15 операционных усилителей OPA100 (т.е. N = 15), провести измерения и сформировать статистику на основе этой выборки.

Если OPA100 имеет типовое напряжение смещения 1 мВ при соответствующей рабочей температуре, распределение напряжений смещения в 15-компонентной выборке может выглядеть примерно так:

Рисунок 1 – По мере увеличения размера выборки измеренное распределение будет больше напоминать нормальное распределение.

Вы измерили напряжение смещения каждого компонента, и теперь вы можете рассчитать стандартное отклонение, но сначала вам нужно задать себе вопрос: «я хочу рассчитать стандартное отклонение для выборки или для генеральной совокупности?». Другими словами, я должен отчитаться о стандартном отклонении этих 15 компонентов передо мной, или я должен попытаться отчитаться о стандартном отклонении, которое применяется ко всем операционным усилителям OPA100?

Стандартное отклонение выборки

Если мы работаем с выборкой и хотим знать стандартное отклонение выборки, мы делим на N. Это имеет смысл – как упоминалось выше, мы всегда делим на N при вычислении среднего арифметического, а стандартное отклонение включает в себя среднее арифметическое мощности отклонений в наборе данных.

Итак, чтобы продолжить наш пример, деление на N даст вам стандартное отклонение 15 операционных усилителей OPA100, которые вы приобрели.

Рисунок 2 – Вертикальные линии показывают значения напряжения, которые на величину одного стандартного отклонения выше и ниже среднего значения выборки. При расчете стандартного отклонения я делил на N.

Другим типом данных, с которым часто сталкиваются инженеры-электронщики, является оцифрованный сигнал напряжения, и, как мы видели в предыдущей статье, стандартное отклонение представляет собой метод количественной оценки электрического шума.

Если вы хотите узнать стандартное отклонение полученного сигнала, то есть конкретные уровни напряжения, которые были оцифрованы и сохранены в памяти, и при расчете стандартного отклонения вы должны делить на N. В этом случае полученный сигнал является статистической выборкой.

Стандартное отклонение генеральной совокупности

Если мы работаем с выборкой и хотим знать стандартное отклонение генеральной совокупности, мы делим на N–1. Термин «генеральная совокупность» относится ко всей группе, для которой предоставленные данные дают репрезентативную выборку. Использование N–1 вместо N – это метод компенсации ошибки, связанной с конечным размером нашей выборки. Этот прием называется коррекцией Бесселя.

Коррекция необходима, потому что если мы хотим рассчитать стандартное отклонение генеральной совокупности, мы должны использовать среднее значение генеральной совокупности. Но обычно к генеральной совокупности у нас доступа нет. У нас есть только среднее значение выборки, которое является приблизительным значением среднего значения генеральной совокупности. Оказывается, что, когда мы используем среднее значение выборки вместо среднего значения генеральной совокупности, рассчитанное стандартное отклонение постоянно получается ниже реального, а деление на N–1 вместо N смягчает этот эффект.

Таким образом, если вы хотите оценить стандартное отклонение напряжения смещения для всех произведенных операционных усилителей OPA100, вам следует собрать данные из вашей 15-компонентной выборки, а затем при расчете стандартного отклонения делить на 14 вместо 15.

Рисунок 3 – Вертикальные линии показывают значения напряжения, которые на величину одного стандартного отклонения выше и ниже среднего значения выборки. При расчете стандартного отклонения я делил на N–1.

Точно так же, если вы хотите количественно оценить шум в напряжении сигнала на основе относительно короткого периода сбора данных, вы должны делить на N–1. В этом случае оцифрованные данные являются выборкой, а сам сигнал является генеральной совокупностью.

Вы также можете думать об этом следующим образом: когда мы делим на N–1, мы фокусируемся на основных процессах, которые создают шум в анализируемом сигнале, а не измеряем влияние этих процессов в течение отрезка времени, представленного полученными точками данных.

Точечная и интервальная оценки среднего значения

Если среднее значение генеральной совокупности оценивается числом (точкой), то за
оценку неизвестной средней величины генеральной совокупности принимается конкретное среднее, которое
рассчитано по выборке наблюдений. В таком случае значение среднего выборки — случайной величины
— не совпадает
со средним значением генеральной совокупности. Поэтому, указывая среднее значение выборки, одновременно
нужно указывать и ошибку выборки. В качестве меры ошибки выборки используется стандартная ошибка
, которая выражена
в тех же единицах измерения, что и среднее. Поэтому часто используется следующая запись:
.

Если оценку среднего требуется связать с определённой вероятностью, то интересующий
параметр генеральной совокупности нужно оценивать не одним числом, а интервалом. Доверительным
интервалом называют интервал, в котором с определённой вероятностью P находится значение оцениваемого
показателя генеральной совокупности. Доверительный интервал, в котором с вероятностью
находится случайная
величина ,
рассчитывается следующим образом:

,

где —
критическое значение стандартного нормального распределения для уровня значимости
, которое можно найти
в приложении к практически любой книге по статистике.

На практике среднее значение генеральной совокупности
и дисперсия
не известны, поэтому дисперсия генеральной совокупности заменяется дисперсией выборки ,
а среднее генеральной совокупности — средним значением выборки . Таким образом, доверительный
интервал в большинстве случаев рассчитывается так:

.

Формулу доверительного интервала можно использовать для оценки среднего генеральной
совокупности, если

  • известно стандартное отклонение генеральной совокупности;
  • или стандартное отклонение генеральной совокупности не известно, но объём выборки — больше 30.

Среднее значение выборки
является несмещённой оценкой среднего генеральной совокупности .
В свою очередь, дисперсия выборки
не является несмещённой оценкой дисперсии генеральной совокупности .
Для получения несмещённой оценки дисперсии генеральной совокупности в формуле дисперсии выборки объём
выборки n следует заменить на n-1.

Пример 1. Собрана информация из 100 случайно выбранных кафе в
некотором городе о том, что среднее число работников в них составляет 10,5 со стандартным отклонением
4,6. Определить доверительный интервал 95% числа работников кафе.

Решение:

,

где —
критическое значение стандартного нормального распределения для уровня значимости
.

Таким образом, доверительный интервал 95% среднего числа работников кафе
составил от 9,6 до 11,4.

Пример 2. Для случайной выборки из генеральной совокупности из 64
наблюдений вычислены следующие суммарные величины:

сумма значений в наблюдениях ,

сумма квадратов отклонения значений от среднего .

Вычислить доверительный интервал 95 % для математического ожидания.

Решение:

вычислим стандартное отклонение:

,

вычислим среднее значение:

.

Подставляем значения в выражение для доверительного интервала:

.

где —
критическое значение стандартного нормального распределения для уровня значимости
.

Получаем:

.

Таким образом, доверительный интервал 95% для математического ожидания данной выборки
составил от 7,484 до 11,266.

Пример 3. Для случайной выборки из генеральной совокупности из 100
наблюдений вычислено среднее значение 15,2 и стандартное отклонение 3,2. Вычислить доверительный интервал
95 % для математического ожидания, затем доверительный интервал 99 %. Если мощность выборки и её
вариация остаются неизменными, а увеличивается доверительный коэффициент, то доверительный интервал
сузится или расширится?

Решение:

Подставляем данные значения в выражение для доверительного интервала:

.

где —
критическое значение стандартного нормального распределения для уровня значимости
.

Получаем:

.

Таким образом, доверительный интервал 95% для среднего данной выборки
составил от 14,57 до 15,82.

Вновь подставляем данные значения в выражение для доверительного интервала:

.

где —
критическое значение стандартного нормального распределения для уровня значимости
.

Получаем:

.

Таким образом, доверительный интервал 99% для среднего данной выборки
составил от 14,37 до 16,02.

Как видим, при увеличении доверительного коэффициента увеличивается также критическое
значение стандартного нормального распределения, а, следовательно, начальная и конечная точки интервала
расположены дальше от среднего, и, таким образом, доверительный интервал для математического ожидания
увеличивается.

Назначение и свойство стандартной ошибки средней арифметической

Стандартная ошибка средней много, где используется. И очень полезно понимать ее свойства. Посмотрим еще раз на формулу стандартной ошибки средней:

Числитель – это стандартное отклонение выборки и здесь все понятно. Чем больше разброс данных, тем больше стандартная ошибка средней – прямо пропорциональная зависимость.

Посмотрим на знаменатель. Здесь находится квадратный корень из объема выборки. Соответственно, чем больше объем выборки, тем меньше стандартная ошибка средней. Для наглядности изобразим на одной диаграмме график нормально распределенной переменной со средней равной 10, сигмой – 3, и второй график – распределение средней арифметической этой же переменной, полученной по 16-ти наблюдениям (которое также будет нормальным).

Судя по формуле, разброс стандартной ошибки средней должен быть в 4 раза (корень из 16) меньше, чем разброс исходных данных, что и видно на рисунке выше. Чем больше наблюдений, тем меньше разброс средней.

Казалось бы, что для получения наиболее точной средней достаточно использовать максимально большую выборку и тогда стандартная ошибка средней будет стремиться к нулю, а сама средняя, соответственно, к математическому ожиданию. Однако квадратный корень объема выборки в знаменателе говорит о том, что связь между точностью выборочной средней и размером выборки не является линейной. Например, увеличение выборки с 20-ти до 50-ти наблюдений, то есть на 30 значений или в 2,5 раза, уменьшает стандартную ошибку средней только на 36%, а со 100-а до 130-ти наблюдений (на те же 30 значений), снижает разброс данных лишь на 12%.

Лучше всего изобразить эту мысль в виде графика зависимости стандартной ошибки средней от размера выборки. Пусть стандартное отклонение равно 10 (на форму графика это не влияет).

Видно, что примерно после 50-ти значений, уменьшение стандартной ошибки средней резко замедляется, после 100-а – наклон постепенно становится почти нулевым.

Таким образом, при достижении некоторого размера выборки ее дальнейшее увеличение уже почти не сказывается на точности средней. Этот факт имеет далеко идущие последствия. Например, при проведении выборочного обследования населения (опроса) чрезмерное увеличение выборки ведет к неоправданным затратам, т.к. точность почти не меняется. Именно поэтому количество опрошенных редко превышает 1,5 тысячи человек. Точность при таком размере выборки часто является достаточной, а дальнейшее увеличение выборки – нецелесообразным.

Подведем итог. Расчет дисперсии и стандартной ошибки средней имеет довольно простую формулу и обладает полезным свойством, связанным с тем, что относительно хорошая точность средней достигается уже при 100 наблюдениях (в этом случае стандартная ошибка средней становится в 10 раз меньше, чем стандартное отклонение выборки). Больше, конечно, лучше, но бесконечно увеличивать объем выборки не имеет практического смысла. Хотя, все зависит от поставленных задач и цены ошибки. В некоторых опросах участие принимают десятки тысяч людей.

Дисперсия и стандартная ошибка средней имеют большое практическое значение. Они используются в проверке гипотез и расчете доверительных интервалов.

Взвешенное среднее

Взвешенное среднее используют тогда, когда не­которые значения интересующей нас переменной x более важны, чем другие

Мы присоединяем вес wi к каждому из значений xi в нашей выборке для то­го, чтобы учесть эту важность

Если значения x1, x2 … xn имеют соответствующий вес w1, w2 … wn, то взвешенное арифметическое среднее выглядит следующим образом:

Например, предположим, что мы заинтересованы в определении средней продолжительности госпита­лизации в каком-либо районе и знаем средний реа­билитационный период больных в каждой больнице. Учитываем количество информации, в первом при­ближении принимая за вес каждого наблюдения число больных в больнице.

Взвешенное среднее и среднее арифметическое идентичны, если каждый вес равен единице.

Исправление для конечного населения

Формула, данная выше для стандартной ошибки, предполагает, что объем выборки намного меньше, чем численность населения, так, чтобы население, как могли полагать, было эффективно бесконечно в размере. Это обычно имеет место даже с конечным населением, потому что большую часть времени, люди прежде всего интересуются управлением процессами, которые создали существующее конечное население; это называют аналитическим исследованием, после В. Эдвардса Деминг. Если люди интересуются управлением существующим конечным населением, которое не будет изменяться в течение долгого времени, то необходимо приспособиться для численности населения; это называют исчисляющим исследованием.

Когда часть выборки большая (приблизительно в 5% или больше) в исчисляющем исследовании, оценка ошибки должна быть исправлена, умножившись «конечным исправлением населения»

\text {FPC} = \sqrt {\\frac {N-n} {n-1} }\

составлять добавленную точность, полученную, пробуя близко к большему проценту населения. Эффект FPC состоит в том, что ошибка становится нолем, когда объем выборки n равен численности населения N.

ПРЕДСТАВЛЕНИЕ РЕЗУЛЬТАТОВ НАУЧНЫХ ИССЛЕДОВАНИЙ

В своей статье «Осторожно, статистика!», опубликованной в 1989 году В.М. Зациорский указал, какие числовые характеристики должны быть представлены в публикации, чтобы она имела научную ценность

Он писал, что исследователь «…должен назвать: 1) среднюю величину (или другой так называемый показатель положения); 2) среднее квадратическое отклонение (или другой показатель рассеяния) и 3) число испытуемых. Без них его публикация научной ценности иметь не будет “с. 52

В научных публикациях в области физической культуры и спорта очень часто окончательный результат приводится в виде:  (М±m) (табл.1).

Таблица 1 — Изменение механических свойств латеральной широкой мышцы бедра под воздействием физической нагрузки (n=34)

Эффективный модуль

упругости (Е), кПа

Эффективный модуль

вязкости (V), Па с

Этап

эксперимента

Рассл. Напряж. Рассл. Напряж.
До ФН 7,0±0,3 17,1±1,4 29,7±1,7 46±4
После ФН 7,7±0,3 18,7±1,4 30,9±2,0 53±6

Стандартная ошибка в Excel

Расчет с помощью комбинаций функций

На примере рассмотрим составленный алгоритм действий по расчету ошибки средней арифметической с использованием комбинаций функций. Для того чтобы выполнить задачу, нужно использовать операторы СТАНДОТКЛОН.В, КОРЕНЬ и СЧЁТ. Выборка будет использоваться из 12 чисел, которые представлены в таблице.

Выделите ячейку, в которой отобразится итоговое значение стандартной ошибки. Кликаете на иконку «Вставить функцию».

Появится Мастер функций, в котором нужно произвести перемещение в блок «Статистические». Появится список наименований, выбираете «СТАНДОТКЛОН.В».

Запустится окно аргументов выбранного оператора, предназначенного для оценивания стандартного отклонения при выборке. У него такой синтаксис – =СТАНДОТКЛОН.В(число1;число2;…). Устанавливаете курсор в полу «Число1». Далее, зажав левую кнопку мыши, выделяете курсором весь диапазон выборки, чтобы координаты этого массива отобразились там же в поле окна. Кликаете на ОК.

В ячейке появится проделанный результат, но это еще не то, что мы хотим получить в итоге. Теперь нужно стандартное отклонение разделить на квадратный корень от числа элементов выборки. Выделяете ячейку с нужной функцией и устанавливаете курсор мышки в строку формул. Дописываете выражение, которое там уже существует, знаком деления (/). Далее нажимаете на пиктограмму перевернутого вниз углом треугольника (находится слева от строки формул). Должен открыться список недавно использованных функций. Находите оператора «КОРЕНЬ» и нажимаете на него. Если его нет в списке, то кликайте на «Другие функции…».

Должен снова запуститься Мастер функций, в котором нужно перейти в категорию «Математические». Выделяете там «КОРЕНЬ» и кликаете ОК.

Далее должно открыться окно аргументов функции КОРЕНЬ. Его синтаксис простой – =КОРЕНЬ(число). Устанавливаете курсор в поле «Число» и нажимаете на уже знакомый треугольник, чтобы показался список последних использованных функций. Находите «СЧЕТ» и нажимаете на него. Если в списке его нет, тогда нажимаете на «Другие функции…».

Появится раскрывшееся окно Мастера функций, в котором нужно переместиться в группу «Статистические». В ней выделяете «СЧЕТ» и кликаете ОК.

Должно запуститься окно аргументов функции СЧЕТ. Синтаксис функции будет таким – =СЧЁТ(значение1;значение2;…). Ставите курсор в строку «Значение1» и зажимаете левую кнопку мыши, чтобы выделить весь диапазон выборки. Когда координаты отобразятся, жмите ОК.

Когда будет выполнено последнее действие, то не только произведется расчет количества ячеек, которые заполнены числами, но и вычисляется ошибка средней арифметической. Величина будет выведена в ячейку с размещенной сложной формулой, вид которой таков – =СТАНДОТКЛОН.В(B2:B13)/КОРЕНЬ(СЧЁТ(B2:B13)).

Если выборка до 30 единиц, тогда лучше применять немного другую формулу – =СТАНДОТКЛОН.В(B2:B13)/КОРЕНЬ(СЧЁТ(B2:B13)-1).

Применение инструмента «Описательная статистика»

Когда будет открыт документ с выборкой, нужно перейти во вкладку «Файл».

В левом вертикальном меню заходите в раздел «Параметры».

Должно запуститься окно параметров Excel, в левой части которого нужно перейти в «Надстройки».

В самом низу окна находите «Управление» в выставляете в нем параметр «Надстройки Excel». Кликаете на «Перейти…» справа от него.

В окне надстроек появится список скриптов, которые доступны и нужно отметить галочкой «Пакет анализа», а затем нажать ОК.

Теперь на странице должна появиться новая группа инструментов «Анализ». Для перехода к ней кликаете на вкладку «Данные».

Кликаете на «Анализ данных» в блоке инструментов «Анализ» в самом конце.

Запустится окно выбора инструмента анализа, в котором необходимо выделить «Описательная статистика» и нажать справа на ОК.

Далее запустится окно настроек инструмента комплексного статистического анализа «Описательная статистика». Здесь нужно установить все так, в зависимости от того, что именно вы хотите получить в итоге.

После всех совершенных манипуляций, инструмент «Описательная статистика» должен отобразить результаты обработки выборки на текущем листе. Разноплановых статистических показателей будет немало, но среди них находится и тот, который нам нужен – «Стандартная ошибка».

Понятие о неравноточных измерениях

_______Неравноточными измерениями называются такие, которые выполнены различным
числом приемов, приборами различной точности и т.д.
Если измерения неодинаковой точности, то для определения общей арифметической
середины пользуются формулой:

где p1, p2, p3, ……..pn — соответствующие веса неравноточных измерений l1, l2, l3,……. l n

________Весом называется число, которое выражает степень доверия к результату измерения. В тех случаях, когда неизвестны веса измеренных величин, а известны их средние
квадратические ошибки, то веса можно вычислить по формуле:

_______При неравноточных измерениях средняя квадратическая ошибка измерения, вес
которого равен единице, определяется по формуле:

где δ – разность между отдельными результатами измерений и общей арифметической
серединой.

Дисперсия

Один из способов измерения рассеяния данных за­ключается в том, чтобы определить степень отклоне­ния каждого наблюдения от средней арифметической. Очевидно, что чем больше отклонение, тем больше изменчивость, вариабельность наблюдений.

Однако мы не можем использовать среднее этих отклонений как меру рассеяния, потому что положительные от­клонения компенсируют отрицательные отклонения (их сумма равна нулю). Чтобы решить эту проблему, мы возводим в квадрат каждое отклонение и находим среднее возведенных в квадрат отклонений; эта величина называется вариацией, или дисперсией.

Возьмем n наблюдений x1, x2, х3, …, xn, среднее которых равняется .

Вычисляем дисперсию:

В случае, если мы имеем дело не с генеральной совокупностью, а с выборкой, то вычисляется выборочная дисперсия:

n(n-1).

Единицы измерения (размерность) вариации — это квадрат единиц измерения первоначальных на­блюдений.

Например, если измерения производятся в килограммах, то единица измерения вариации будет килограмм в квадрате.

Средняя квадратическая ошибка

_______Точность результатов измерений оценивается средней квадратической ошибкой. Средняя квадратическая ошибка одного измерения вычисляется по формуле:

где – сумма квадратов вероятнейших ошибок; n – число измерений. Средняя квадратическая ошибка арифметической середины вычисляется по формуле:

_______Предельная ошибка не должна превышать утроенной средней квадратической ошибки, т.е. ε = 3 x m.

_______Иногда о точности измерений судят не по абсолютной величине средней квадратической или предельной погрешности, а по величине относительной ошибки.
___

_______Относительной ошибкой называется отношение абсолютной ошибки к значению самой измеренной величины. Относительную ошибку выражают в виде простой дроби, числитель которой — единица, а знаменатель — число, округленное до двух-трех значащих цифр с нулями. Например, относительная средняя квадратическая погрешность
измерения линии длиной:

_______l = 110 м, при m = 2 см, равна m/l = 1/5500.

_______Пример:

_______Линия измерена шесть раз. Определить ее вероятнейшую длину и оценить точность этого результата. Вычисления приведены в таблице:

Таб. 1

_______По формулам вычислены абсолютные средние квадратические ошибки, а оценивать
точность измерения длины линии необходимо по относительной ошибке. Поэтому нужно абсолютную ошибку разделить на длину линии. Для нашего примера относительная
ошибка вероятнейшего значения измеренной линии равна

Определение стандартной ошибки

Возможно, вы заметили, что разные выборки с одинаковым размером, взятые из одной и той же популяции, дают разные значения рассматриваемой статистики, то есть среднее значение выборки. Стандартная ошибка (SE) обеспечивает стандартное отклонение в различных значениях выборки. Он используется для сравнения выборочных средних по популяциям.

Короче говоря, стандартная ошибка статистики — это не что иное, как стандартное отклонение распределения выборки. Он играет большую роль в проверке статистической гипотезы и оценки интервалов. Это дает представление о точности и достоверности оценки. Чем меньше стандартная ошибка, тем больше равномерность теоретического распределения и наоборот.

Формула : стандартная ошибка для выборочного среднего = σ / √n Где σ — стандартное отклонение населения

Критерий Стьюдента в Microsoft Excel

​ совокупности имеющей нормальное​ его квантили.​ способе округления границ.​ способа. Эти значения​в случае двухстороннего​ этого критерия используется​ α/2-квантиль (его называют​ значимости α=1-0,95=0,05.​ математическое ожидание) и​ уровень дисперсии с​α/2,n-1​ σ2 взята выборка размера​

Определение термина

​ α/2-квантиль. Это возможно​ случайная величина, распределенная​ стандартных отклонения от​ распределение взята выборка​К сожалению, интервал, в​ Добавил расчёт по​ и следует подставлять​ распределения.​ целый набор методов.​ просто α/2-квантиль), т.к.​Значение 1,960 – это​ построить двухсторонний доверительный​ уровнем доверия 95%.​)=α/2). Чтобы найти этот​ n. Необходимо на​Правая граница: =78+НОРМ.СТ.ОБР(1-0,05/2)*8/КОРЕНЬ(25)=81,136​ не известна (оно​

Расчет показателя в Excel

​ потому, что стандартное​ по нормальному закону,​ среднего значения (см.​ размера n. Предполагается,​ котором​​ своему источнику с​​ в данную функцию.​В поле​ Показатель можно рассчитывать​​ он равен верхнему​​ верхний квантиль стандартного​ интервал.​Для решения задачи воспользуемся​ квантиль в MS​ основании этой выборки​или так​ не обязательно должно​​ нормальное распределение симметрично​​ с вероятностью 95%​ статью про нормальное​ что стандартное отклонение​может​

Способ 1: Мастер функций

​ округлением вниз. Разница​После того, как данные​«Тип»​

  1. ​ с учетом одностороннего​ α/2-квантилю со знаком​

  2. ​ нормального распределения, соответствующий​Т.к. в этой задаче​ выражением​​ EXCEL используйте формулу =ХИ2.ОБР.ПХ(α;​​ оценить дисперсию распределения​Левая граница: =НОРМ.ОБР(0,05/2; 78;​

  3. ​ быть нормальным). Среднее,​ относительно оси х​ попадает в интервал​​ распределение). Этот интервал,​​ этого распределения известно.​​находиться неизвестный параметр,​​ значительная.​ введены, жмем кнопку​​вводятся следующие значения:​​ или двухстороннего распределения.​

  4. ​ минус.​ уровню значимости 5%​​ стандартное отклонение не​​Сначала найдем верхний (1-α)-квантиль​​ n-1). χ2​​ и построить доверительный​ 8/КОРЕНЬ(25))​ т.е. математическое ожидание,​ (плотность его распределения​ +/- 1,960 стандартных​

    ​ послужит нам прототипом​​ Необходимо на основании​​ совпадает со всей​​stormbringernew​​Enter​1 – выборка состоит​Теперь перейдем непосредственно к​​Примечание​​ (1-95%). В нашем​ известно, то вместо​

    ​ (или равный ему​​1-α/2,n-1​​ интервал.​

    • ​Правая граница: =НОРМ.ОБР(1-0,05/2;​ этого распределения также​
    • ​ симметрична относительно среднего,​ отклонений, а не+/-​
    • ​ для доверительного интервала.​ этой выборки оценить​ возможной областью изменения​

    ​: Можете ваш источник​для вывода результата​​ из зависимых величин;​​ вопросу, как рассчитать​

​: Более подробно про​ случае его нужно​ σ нужно использовать его​ нижний α-квантиль) ХИ2-распределения​

Способ 2: работа со вкладкой «Формулы»

​ – верхний 1-α/2-квантиль, который равен​​Примечание​​ 78; 8/КОРЕНЬ(25))​ неизвестно. Известно только​ т.е. 0). Поэтому,​​ 2 стандартных отклонения.​​Теперь разберемся,знаем ли мы​ неизвестное среднее значение​

  1. ​ этого параметра, поскольку​ назвать?​ на экран.​2 – выборка состоит​​ данный показатель в​​ t-распределение Стьюдента см.​

  2. ​ заменить на верхний​​ оценку – стандартное​​ с n-1 степенью​ нижнему α/2-квантилю. Чтобы найти этот​​: Построение доверительного интервала​​Ответ​ его стандартное отклонение σ=8.​​ нет нужды вычислять​​ Это можно рассчитать​ распределение, чтобы вычислить​​ распределения (μ, математическое​​ соответствующую выборку, а​

  3. ​Цитата​Как видим, вычисляется критерий​ из независимых величин;​ Экселе. Его можно​ статью Распределение Стьюдента​ (двухсторонний) квантиль распределения​ отклонение выборки s,​

Способ 3: ручной ввод

​ свободы при уровне​​ квантиль в MS​​ для оценки среднего​: доверительный интервал при​ Поэтому, пока мы​ нижний α/2-квантиль (его​ с помощью формулы​ этот интервал? Для​ ожидание) и построить​

​Формуляр, 21.07.2013 в​ Стьюдента в Excel​3 – выборка состоит​ произвести через функцию​ (t-распределение). Распределения математической​ Стьюдента с n-1​

​ и, соответственно, вместо​ значимости α равном 1-0,95=0,05.​​ EXCEL используйте формулу =ХИ2.ОБР(α;​​ относительно нечувствительно к​ уровне доверия 95%​

​ не можем посчитать​ называют просто α/2-квантиль),​ =НОРМ.СТ.ОБР((1+0,95)/2), см. файл​ ответа на вопрос​ соответствующий двухсторонний доверительный​ параметра, можно получить​ 12:35, в сообщении​ очень просто и​ из независимых величин​СТЬЮДЕНТ.ТЕСТ​ статистики в MS​

​ степенью свободы  t​

lumpics.ru>

Сравнительная таблица

Основа для сравнения Среднеквадратичное отклонение Стандартная ошибка
Смысл Стандартное отклонение подразумевает меру дисперсии набора значений от их среднего значения. Стандартная ошибка обозначает меру статистической точности оценки.
статистика описательный выведенный
меры Насколько наблюдения отличаются друг от друга. Насколько точная выборка означает истинную совокупность.
распределение Распределение наблюдений относительно нормальной кривой. Распределение оценки относительно нормальной кривой.
формула Квадратный корень дисперсии Стандартное отклонение, деленное на квадратный корень размера выборки.
Увеличение размера выборки Дает более конкретную меру стандартного отклонения. Уменьшает стандартную ошибку.