atesting.ru Новости Удивительная особенность производной e в степени х

Удивительная особенность производной e в степени х

Что такое производная функции

Для раскрытия понятия производной следует напомнить что такое функция в математике. Чтобы не загромождать текст сложными определениями, остановимся на интуитивном математическом понятии функции, заключающимся в том, что в ней одна или несколько величин полностью определяют значение другой величины, если они взаимосвязаны. Например, в формуле S = π ∙ r 2 площади круга, значение радиуса r полностью и однозначно определяет площадь круга S.

В зависимости от вида, функции могут быть алгебраическими, тригонометрическими, логарифмическими и др. В них могут быть взаимосвязаны два, три и более аргументов. Например, пройденное расстояние S, которое объект преодолел с равноускоренной скоростью, описывается функцией S = 0,5 ∙ a ∙ t 2 + V ∙ t, где «t» — время движения, аргумент «а» ускорение (может быть как положительной, так и отрицательной величиной) и «V» начальная скорость движения. Таким образом, величина пройденного расстояния зависит от значений трех аргументов, два из которых («а» и «V») постоянны.

Покажем на этом примере элементарное понятие производной функции. Оно характеризует скорость изменения функции в данной точке. В нашем примере это будет скорость движения объекта в конкретный момент времени. При постоянных «а» и «V» она зависит только от времени «t», то есть говоря научным языком нужно взять производную функции S по времени «t».

Этот процесс называется дифференцированием, выполняется путем вычисления предела отношения прироста функции к приросту ее аргумента на ничтожно малую величину. Решения подобных задач для отдельных функций часто является непростым делом и здесь не рассматриваются. Также стоит отметить, что некоторые функции в определенных точках вообще не имеют таких пределов.

В нашем же примере производная S по времени «t» примет вид S’ = ds/dt = а ∙ t + V, из которого видно, что скорость S’ изменяется по линейному закону в зависимости от «t».

Комплексная экспонента

График экспоненты в комплексной плоскости.Легенда

Комплексная экспонента — математическая функция, задаваемая соотношением f(z)=ez{\displaystyle f(z)=e^{z}}, где z{\displaystyle z} есть комплексное число. Комплексная экспонента определяется как аналитическое продолжение экспоненты f(x)=ex{\displaystyle f(x)=e^{x}} вещественного переменного x{\displaystyle x}:

Определим формальное выражение

ez=ex+iy=ex⋅eiy{\displaystyle e^{z}=e^{x+iy}=e^{x}\cdot e^{iy}}.

Определенное таким образом выражение на вещественной оси будет совпадать с классической вещественной экспонентой. Для полной корректности построения необходимо доказать аналитичность функции ez{\displaystyle e^{z}}, то есть показать, что ez{\displaystyle e^{z}} разлагается в некоторый сходящийся к данной функции ряд. Покажем это:

f(z)=ez=ex⋅eiy=eiy∑n=∞xnn!{\displaystyle f(z)=e^{z}=e^{x}\cdot e^{iy}=e^{iy}\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}}.

Сходимость данного ряда легко доказывается:

|eiy∑n=∞xnn!|≤|∑n=∞xnn!|≤∑n=∞|xnn!|=∑n=∞|x|nn!=e|x|{\displaystyle \left|e^{iy}\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}\right|\leq \left|\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}\right|\leq \sum _{n=0}^{\infty }\left|{\frac {x^{n}}{n!}}\right|=\sum _{n=0}^{\infty }{\dfrac {|x|^{n}}{n!}}=e^{|x|}}.

Ряд всюду сходится абсолютно, то есть вообще всюду сходится, таким образом, сумма этого ряда в каждой конкретной точке будет определять значение аналитической функции f(z)=ez{\displaystyle f(z)=e^{z}}. Согласно теореме единственности, полученное продолжение будет единственно, следовательно, на комплексной плоскости функция ez{\displaystyle e^{z}} всюду определена и аналитична.

Свойства

  • Комплексная экспонента — целая голоморфная функция на всей комплексной плоскости. Ни в одной точке она не обращается в ноль.
  • ez{\displaystyle e^{z}} — периодическая функция с основным периодом 2πi: eiφ=ei(φ+2π){\displaystyle e^{i\varphi }=e^{i(\varphi +2\pi )}}. В силу периодичности комплексная экспонента бесконечнолистна. В качестве её области однолистности можно выбрать любую горизонтальную полосу высотой 2π{\displaystyle 2\pi }.
  • ez{\displaystyle e^{z}} — единственная с точностью до постоянного множителя функция, производная (а также соответственно и первообразная) которой совпадает с исходной функцией.
  • Алгебраически экспонента от комплексного аргумента z=x+iy{\displaystyle z=x+iy} может быть определена следующим образом:
    ez=ex+iy=exeiy=ex(cosy+isiny){\displaystyle e^{z}=e^{x+iy}=e^{x}e^{iy}=e^{x}(\cos \,y+i\sin \,y)} (формула Эйлера).

    В частности, имеет место тождество Эйлера:
    eiπ+1=0.{\displaystyle e^{i\pi }+1=0.}

Метод 1: использование специального символа

Начнем мы с наиболее распространенного метода, который заключается в использовании формулы со специальным символом “^”.

В общем виде формула выглядит следующим образом:

  • Число может быть представлено в виде конкретного числа или ссылки на ячейку, содержащую числовое значение.
  • n – степень, в которую возводится заданное число.

Пример 1

Допустим, нам нужно возвести число 7 в куб (т.е. в третью степень). Для этого мы встаем в любую свободную ячейку таблица, ставим знак равно и пишем выражение: =7^3 .

После того, как формула готова, нажимаем клавишу Enter на клавиатуре и получаем требуемый результат в выбранной ячейке.

Пример 2

Возведение в степень может быть частью более сложного математического выражения, состоящего из нескольких действий. Допустим, нам нужно к числу 12 прибавить число, полученное в результате возведения цифры 7 в куб. Так это выражение будет выглядеть в финальном виде: =12+7^3 .

Пишем формулу в свободной ячейке, и после нажатия Enter получаем результат.

Пример 3

Как мы упомянули выше, вместо конкретных значений, в расчетах могут принимать участие ссылки на ячейки с числовыми данными. Допустим, нам нужно возвести в пятую степень значения в ячейках определенного столбца таблицы.

  1. Переходим в ячейку столбца, куда планируем выводить результаты и пишем в ней формулу для возведения числа из исходного столбца (в той же строке) в нужную степень. В нашем случае формула имеет вид: =A2^5 .
  2. Нажимаем клавишу Enter, чтобы получить результат.
  3. Теперь остается растянуть формулу на остальные ячейки столбца, расположенные внизу. Для этого наводим курсор на правый нижний угол ячейки с посчитанными результатом, когда вид указателя сменится на черный плюсик (маркер заполнения), зажав левую кнопку мыши тянем его вниз до последней ячейки, для которой хотим выполнить аналогичные расчеты.
  4. Как только мы отпустим левую кнопку мыши, ячейки столбца автоматически заполняться данными, а именно, возведенными в пятую степень числами из исходного столбца.

Описанный метод достаточно простой и универсальный, из-за чего пользуется наибольшей популярностью среди пользователей. Но помимо него есть и другие способы. Давайте их также рассмотрим.

Экспоненциальный рост

Что такое экспоненциальный рост? Простыми словами, это такой рост, при котором, чем больше вырастят какое-либо значение, тем больше ускоряется его рост. То есть, со временем растет не только значение, но и сама скорость его роста.

А это, иными словами, означает, что значение переменной функции и скорость ее роста находятся в прямо пропорциональной зависимости. То есть, если значение увеличиться два раза, скорость роста увеличится тоже в 2 раза.

В конечном итоге, экспоненциальный рост — самый быстрый.

На самом деле, все вышесказанное касается любой показательной функции, а не только экспоненты.

f(x)=аx

Основанием может быть любое не отрицательное число, хоть два, хоть три, хоть… сколько угодно.

Несколько примеров из жизни

Самым  актуальным и наглядным можно назвать ситуацию с распространением вируса (либо любой другой инфекции). Предположим, что каждый человек в течение дня заражает двух других. Тогда, в первый день у нас будет один инфицированный, во второй — трое. Один старый знакомый и два новых. Каждый из новичков, в свою очередь заразит двух других. В третий день — 7 заразившихся, в четвертый — 1, а пятый — 31…Стоп, это только при условии, что каждый человек заразит только двоих и, чудесным образом, перестанет это делать на притяжении следующих дней. Но ведь так не будет! Все эти люди и дальше будут заражать по 2 человека в день.

А раз так, то на третий день будет уже 9 разносчиков вируса, на пятый — 81, а через неделю по нашему воображаемому городу будет бродить уже 729 зараженных.

Это и будет экспоненциальный рост количества зараженных. Без учета их лечения, карантина или любых других мер, болезнь будет развиваться именно так. Через 10 дней зараженных людей будет уже 59 тысяч человек. Через 15 дней — более 14 миллионов. Просто математика, но какой яркий пример экспоненциального роста?

Легко вывести формулу: 1, 3, 9, 27, 81… это «три» в степени 2, 3 и 4. То есть, показательна функция с основанием 3.

f(x)=3x

И, хотя в этой формуле в степень возводится не число Эйлера (2,71828….), такой рост тоже называется экспоненциальным.

Еще один пример из биологии: размножение бактерий.

Бактерии размножаются делением. Каждая делится надвое и так далее… Но, конечно, не бесконечно. Предел есть, но об этом чуть позже.

Экспоненциальный рост в экономике

Есть примеры роста по экспоненте и в экономике. Самый интересный — финансовая пирамида. Самый безопасный — Закон Мура.

Первый закон Мура гласит, что количество транзисторов удваивается каждые 2 года. Таким образом и вычислительные мощности компьютера удваиваются каждые два года.

Второй Закон Мура (который сформулировал уже не Гордон Мур) гласит, что стоимость производства микросхем также возрастает экспоненциально из-за усложнения технологий.

Что же касается финансовых пирамид, то основная идея в том, что их рост обусловлен исключительно ростом количества «сектантов» верящих в огромные прибыли или тех, кто верит, что сумеет вовремя «соскочить». Так или иначе, пирамиды всегда рушатся. И вот вопрос, почему?

Но, конечно, рост не может продолжаться бесконечно. В случае с бактериями (и любыми другими организмами, да хоть мышами), наступит время, когда им не хватит пространства и пищи. В случае с микросхемами наступит физический предел скорости передачи данных (мы вряд ли сумеем превысить скорость света). Ну а всевозможные волшебные экономические модели в форме пирамид рано или поздно сталкиваются с той же проблемой, питательная среда в виде легковерных последователей

Метод 3: использование квадратного корня

Безусловно, этот метод вряд ли популярен среди пользователей, но и он в некоторых случаях применим, когда требуется возвести какое-то число в степень 0,5 (другими словами, вычислить его квадратный корень).

Допустим, требуется возведение числа 16 в степень 0,5.

  1. Переходим в ячейку, где планируемся посчитать результат. Жмем кнопку “Вставить функцию” (fx) рядом со строкой формул.
  2. В окне вставки функции выбираем оператор “КОРЕНЬ”, расположенный в категории “Математические”.
  3. Аргумент у данной функции всего один – “Число”, так как с помощью нее можно выполнить только одно математическое действие – извлечение квадратного корня из указанного числового значения. Указать можно как конкретное число, так и ссылку на ячейку (вручную или выбрав с помощью клика левой кнопкой мыши). По готовности кликаем OK.
  4. Результат вычисления по функции отобразится в выбранной ячейке.

Число е – это не просто число

Описывать е как «константу, приблизительно равную 2,71828…» — это все равно, что называть число пи «иррациональным числом, приблизительно равным 3,1415…». Несомненно, так и есть, но суть по-прежнему ускользает от нас.

Число пи — это соотношение длины окружности к диаметру, одинаковое для всех окружностей. Это фундаментальная пропорция, свойственная всем окружностям, а следовательно, она участвует в вычислении длины окружности, площади, объема и площади поверхности для кругов, сфер, цилиндров и т.д. Пи показывает, что все окружности связаны, не говоря уже о тригонометрических функциях, выводимых из окружностей (синус, косинус, тангенс).

Число е является базовым соотношением роста для всех непрерывно растущих процессов. Число е позволяет взять простой темп прироста (где разница видна только в конце года) и вычислить составляющие этого показателя, нормальный рост, при котором с каждой наносекундой (или даже быстрее) всё вырастает еще на немного.

Число е участвует как в системах с экспоненциальным, так и постоянным ростом: население, радиоактивный распад, подсчет процентов, и много-много других. Даже ступенчатые системы, которые не растут равномерно, можно аппроксимировать с помощью числа е.

Также, как любое число можно рассматривать в виде «масштабированной» версии 1 (базовой единицы), любую окружность можно рассматривать в виде «масштабированной» версии единичной окружности (с радиусом 1). И любой коэффициент роста может быть рассмотрен в виде «масштабированной» версии е («единичного» коэффициента роста).

Так что число е – это не случайное, взятое наугад число. Число е воплощает в себе идею, что все непрерывно растущие системы являются масштабированными версиями одного и того же показателя.

Интересные факты

Экспоненциальную функцию также называют экспонента.

Показательная функция — это функция вида y=a×, где a — заданное число (основание), x — это переменная.

А если основание = е, с переменной x, то математически логарифм записывается как ln, а не как log. И его называют натуральный логарифм (логарифм с основанием е):

Логарифмическая функция, что обратная к показательной функции y = a×, a > 0, a≠1, пишется как .

Производная и первообразная экспоненциальной функции равны ей самой, т. е. (e×)’ = e×, но (a×)’ = (a×)*ln(a).

Якобу Бернулли в расчётах помогал его брат Иоганн. Один из кратеров на Луне носит их имя.